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We propose a Ginzburg-Landau-type approximation for the local Gibbs states 
for quantum mean-field models that leads to the exact thermodynamics. Using 
this approach, we compute the spin fluctuations for some spin-l/2 models. At 
the critical temperature we find explicitly the distribution function showing 
abnormal fluctuations. 
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1. I N T R O D U C T I O N  

Systems of dependent random variables ("spins") x~,..., xN with joint 
distributions of the form 

Xl+  . N 

U p(dxi) 
i = 1  

have extensively been considered in the literature both because of their 
tractability and their applications to mean-field systems in statistical 
mechanics. The prototype example is the Curie-Weiss model, where 
F ( x ) = � 8 9  2 and p ( { 1 } ) = p ( { - 1 } ) =  1/2. 

If such models exhibit a phase transition at a critical value /~c of/?, 
then, for/3 </~c, the asymptotic distribution ( N ~  00) of (1/,,/N) SN, where 
S N = X l  + " ' x N ,  is Gaussian. Ellis and Newman (7'8) showed that this is 
not true at the critical point fl =//e. In order to compute these critical fluc- 
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tuations, one has to take simultaneously the limit N ~ ~ for the size of the 
system and the number of random variables in the fluctuation and SN has 
to be scaled down by a factor N 3/4. This way of taking the limit is related 
to the idea of finite-size scaling. (6) The result on critical behavior has been 
generalized and studied from different points of view.(2 4,11) 

In this paper we are interested in the quantum mechanical mean-field 
models, i.e., we are interested to see what the implications o f  noncom- 
mutativity are on the fluctuations. The random variables become now non- 
commuting operators. For  the sake of transparency we will limit ourselves 
to the treatment of a few spin-l/2 models. The quantum mechanical result 
turns out to yield an intrinsically multidimensional version of the classical 
situation. We examine a number of mean-field models starting from the 
simplest models of the Curie-Weiss type, over the mean-field Heisenberg 
model, up to the strongly coupled BCS model. All these models have a 
phase transition at a nonzero critical temperature Tc and exhibit abnormal 
fluctuations at To. We explicitly compute the corresponding non-Gaussian 
distribution functions. 

Our starting point is based on the well-known de Finetti theorem and 
on its noncommutative extension (13) that characterize permutation- 
invariant joint distributions (1.1) of an infinite number of random variables 
as mixtures of independent, identical distributions. Let J~d be the algebra 
of complex d x d matrices and let sJ be the tensor product @ ~ d/Z a. For 
x, y,... ~ Jgd we denote by xi, yi,.., copies of x, y,... at the "site" i in N and 
we put SN(x)= Xl + "''XN, SN(y) . . . .  . A mean-field system is then given 
by specifying Hamiltonians HN of the type 

/1  S 1 HN= Nf ~ N(X), ~ SN(y),...) (1.2) 

The popular models are all of this type with f at most quadratic. The equi- 
librium states of such systems are all expressible as convex combinations of 
product states cop = @ i Pt on d ,  where p~ is a copy of a density matrix p 
in ~'d satisfying the so-called gap equation (9) (see also ref. 12). 

With this in mind and in view of computing fluctuations around equi- 
librium, we consider the following local approximation o N of the density 
matrix in the volume {1 ..... N} at the inverse temperature f l=  1/kT: 

~1 rn(dp ) [exp --flFN(p ) ] @U=l Pi 
aN-  ~9-~ m(dp) exp --flFu(p) (1.3) 

where FN(p) is the free energy of the system in the state cop: 

flFu(p ) = flco p( HN) + N T r  p log p 
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The measure m(dp) is the translation-invariant measure on the set ~ of 
density matrices in ~/~a and shall be made more explicit later. Because of the 
extensivity of the free energy FN(p), it is clear that in the limit N--* oo the 
canonical Gibbs state, minimizing the free energy density, will be favored 
and so, for local observables A ~ d ,  limu~ooax(A) coincides with the 
Gibbs state expectation at inverse temperature/3. We will now use formula 
(1.3) for the computation of fluctuations around equilibrium, i.e., we are 
interested in the existence and in the explicit expressions of the following 
characteristic functions: 

~( )o)  = lira j m(dp) exp --flFN(p) exp(2/N~)[p(Su) - ~N(SN)] (1.4) 
N ~ o v  m(dp) exp --/3FN(p) 

Of course this limit can only exist and yield a nontrivial result for specific 
values of the parameter c~. If c~ = 1/2, one speaks about normal fluctuations; 
if a > 1/2 one has abnormal fluctuations. The parameter ~ will in general 
depend on the temperature and on the observable whose fluctuations 
are being computed. In fact, formula (1.4) gives the distribution of the 
fluctuations of the random variables Ai~cop(Ai) on the set of density 
matrices ~ .  

Clearly our approach has been inspired by the Ginzburg-Landau 
theory of critical phenomena. (5'1~ introduce some randomness around 
the local restrictions of the equilibrium state, which amounts heuristically 
to introducing random Hamiltonians H(p) = - l o g  p with a probability dis- 
tribution that is governed by the entropy; this idea goes back to Boltzmann 
and has been considered by Einstein, Ginzburg, Landau, etc. At this point 
one should also refer to ref. 1, where fluctuations of the Curie-Weiss model 
in a random external field are studied. 

As far as our results are concerned, our approach yields, both for the 
classical and the quantum mechanical Curie-Weiss models, the same 
results for the critical fluctuations as those computed with the local Gibbs 
states. In these cases all computations can be performed explicitly. It is 
interesting to remark that the order of criticality of the fluctuations is 
exactly the same for both the classical and the quantum mechanical cases. 
The quantum nature appears only in the coefficients governing the distribu- 
tion. For the Heisenberg and BCS models the computation of the Gibbs 
critical fluctuations is technically much more involved and has, as far as we 
know, not been done yet. It is therefore at the moment not possible to 
compare our results with the distributions obtained from Gibbs states. 
There is a general belief that the quantum character of the fluctuations is 
suppressed at the critical point. An argument in favor of this is that critical 
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fluctuations behave like classical random variables. Indeed, the com- 
mutator of two critical fluctuations vanishes in the thermodynamic limit: 

lira SN(X],--S'N(y~ = 0  if C~>-- 
N ~ o o  2 

We have, however, no proof for general mean-field models of such a 
classical behavior. 

2. THE MODELS 

We will now examine a number of rather simple mean-field models; 
special attention will be paid to the behavior of the fluctuations at the 
critical temperature. 

2.1. Cur ie-Weiss Models  

We first consider these models on a purely classical level. They are 
described by a configuration space S - - - K  ~, where K =  { 1 , - 1 } .  The 
algebra of observables d is given by the continuous functions cg(cC) on 
and the basic observables are the spin functions ai at the different sites: 
ai(co) = co(i), co ~ oU. The local Hamiltonians H u of these systems are, as in 
(1.2), given by 

H N = - J N  ~ 2 k ( 2 k - l )  ~i 
k = l  i = l  

It will be convenient, however, to replace HN by an equivalent expression 
[up to order 0(1)] :  

g N= --JN 2k (2k -  1.) 2k ~, a~l...a~; k (2.1) 
k =  1 1 ~ i  1 < , . . i 2 k ~ N  

The symmetric product measures of the system are given by single-site 
measures p, which we parametrize with a real parameter x e [ - 1, 13: 

p = �89 + xo)  

Therefore, in this case, the set ~ in formula (1.3) is the interval [ - 1 ,  1] 
and the measure m(dp) is the Lebesgue measure dx on [ - 1 ,  1]. The free 
energy Fu(p) equals 

f u(p) = --N J 2k(2k =- 1) 
k = l  
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where s(p) is the entropy density of the product measure built on p: 

1 1 1 1 
- s ( p ) = ~  (1 + x ) l o g ~  ( l + x ) + ~  ( 1 - x )  log~ ( l - x )  

1 X2 k 
= log 2 -- 2k(2k - 1 ) 

k = l  

Then 

fiFN(p ) = flNf (p ) 

= - N l ~  J - l )  i 1 
= 1 2k(2k - 1) 

1 x2 k 
+ N 2k(2k - 1) 

k = r + l  

X 2k 

(2.2) 

where t ip)  is the free energy density. 
Now we have to compute the limit (1.4) with S N = 1~I -}- "''(TN" Clearly 

the main contribution to the integral will come from the measures p that 
minimize the free energy density f(p). It turns out that there is a critical 
value tic for ti given by fl, .J= 1. If ti ~< tic, then f(p) reaches its minimum 
for x = 0 .  If, on the other hand, fl>/?c, then f (p )  reaches its minimum for 
x = +xo, where xo is the positive solution of the equation 

i 1 x2k-2_ ~, 1 x2k 2 
(fiJ - 1 ) 2k ------1 - - -  k=l k=r+1 2 k - 1  

We now compute the limit (1.4) for the cases fl <tic and t = t c :  

(i) If t < t~, we have normal fluctuations, i.e., c~ = 1/2 and 

~ dxexp -�89 - f l j ) x 2 + 2 x  1 2 2 
q~O~)= -~-_~ d-77e~-p-~}(-~--tTjx2- =exp  2 1 - t J  

(ii) If t = t c ,  we have abnormal fluctuations with e = l -  
1/[2(r + 1)] and 

o . ~_~ dxexp - [1 / (2r+l ) (2r+2)]x>+2+2x  
05~ ( , ) =  S%-s [1/ (2r+ 1) (2r+2)]  x >+2 

Note that our results coincide completely with the computation of the 
fluctuations with the local Gibbs states. Remark also that if t = tic, only 
the entropy part of the free energy density determines the distribution func- 

822/65/3-4-25 
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tion of the critical fluctuations. For  general mean-field models containing 
four-point, six-point ..... interactions this will not be true. It is only because 
of the special choice of the interaction constants in (2.1) that the fluctua- 
tions have such a simple distribution functions. Of course, if fl < tic, the 
distribution of the normal fluctuations is determined by both the internal 
energy and the entropy. 

2.2. Quantum Cur ie-Weiss Model  

This model is quantum mechanical in the sense that the observables 
are now M = @ ~ J/{2- The local Hamiltonians now read 

j N 

HN-- N- -  1 ~" (e 'o , ) (e .o j )  
i,j--1 
i<j  

where e is a unit vector in R 3 and ~ is a copy of the spin operators ~ at 
the site i. The components (a~, a : ,  a3) of o are the standard Pauli matrices. 
This model essentially coincides with the model (2.1) with r =  1. In this 
case the symmetric products states are parametrized by a single-site 2 x 2 
density matrix p, which we write as follows: 

1 
p = ~ ( ~  + x . o )  (2.3) 

with x e ~3, [x[ ~< 1. The set Yll of 2 • 2 density matrices in formula (2.3) is 
therefore, in this case, isomorphic with the unit sphere in ~3 and we take 
for the measure m(dp) the Lebesgue measure on ~3 restricted to the unit 
sphere. The free energy density has of course a similar form as that in (2.2): 

flFN(p) = flNf(p) 

= N[  - �89 "x) 2 + �89 + Ixl) log �89 + Ixl) 

+ � 8 9 1 8 9  

An arbitrary local one-site self-adjoint observable can be written in the 
form 2f- ~ with 2 ~ R and f a unit vector in ~3. The quantity SN becomes 
now S u - = f ' f f l +  . - . f ' o "  u. As p ( S N ) = N f ' x  and as the measure (1.3) is 
reflection-invariant, O'N( S N) : O. 

We now compute 

@~.,(2) = lim Sixl.<l dx exp --flNf(p) + 2N 1 if" x 
l v o ,  ~lxl-<l dx exp - f l N f ( p )  
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Again there is a critical point at f l o J =  1 and the computation yields: 

(i) If f i< f i , , ,  the limit N ~  oo exists and is nontrivial if ~ =  1/2, i.e., 
we have normal fluctuations and 

dx exp - �89 2 _  f lJ (e"  x) 2] + 2 f -x  

1). 2 l-(f" e ) 2 2  ~ ( f ' e )  2 ] 
=exp  L I _ ~ +  1 -  

(ii) If fi = tic, then decompose f as 

f = f j l + f •  fH = ( f ' e ) e ;  f :  = f - -  ( f ' e )  e (2.4) 

(a) If fll =0,  then c~= 1/2 and 

~ dxexp - �89 + 2 x  1~ 2 
0~.%(2) -- ~oo7 ~Tx e-xp--72__ = exp - ~ 

(b) If fH #0 ,  then 7 =  3/4 and 

~.%(2) = ~-~oo dx  exp -(1/12)  x 4 + 2(f" e) x 

The computation for the generalized quantum Curie Weiss models 
with r >  1 [see (2.1)] can be performed in a similar way. Again the results 
coincide with the fluctuations computed with the local Gibbs or equi- 
librium states. In this case one has to compute 

Nl im~eNITrex  p2N\ i_~le 'e r~  e x p ~ = l f ' ~  (2.5) 

with 

~ N = T r e x P 2 - N  i 1 e ' ~ i  

dx  exp - �89 2 + y x  

Using the integral representation 

1 2 1 ( ~ exp 2Y = (27Z) 1/2 J_oo 

formula (2.5) becomes ( )J2 
u~ oo (2rC)1/2 --~ dx exp Tr exp xe .  a exp ~-~ f" 

(2.6) 
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and 

Tr exp xe- ~ exp ~-~ f" ~r 

[ .[.fij ,~l/2 ,~ ( ~ )  1/2 .~] 
= 2 [ c o s n ~ - ~ )  x c o s h ~ + f . e s i n h  x s i n h ~  

This reduces formula (2.6) to an easily computable limit, yielding the same 
results as above. 

2.3. Mean-Field Heisenberg Model 

The Hamiltonian of the system is now 

j N 
HN-- N--  1 ~ ~" aj 

i,j=l 
i<j 

We proceed as in Section 2.2 for the labeling of the density matrices p [see 
(2.3)]. The free energy becomes 

f lF N (p ) = f l N f ( p  ) 

= N [ - -  �89 Ixl 2 + �89 + Ixl) log �89 + Ixl) 

+ �89 - I x l )  log �89 - I x l  )] 

We compute again the fluctuation of the magnetization in the 
direction of a unit vector f in ~3. This leads to the computation of 

lim ~bxl ~ 1 dx exp -/3Nf(p) + 2N 1 ~f- x (2.7) 
N - - ~  oo Iixl~< 1 dxexp -/3Nf(p) 

The critical temperature is given by the equation flcJ = 1. If/3 ~< tic, then 
x = 0  is the only solution minimizing the free energy density f (p)  and the 
expansion o f f  around x = 0 is given by 

- f l f (p)  = log 2 - �89 - flJ) Ixl 2 - 1~ Ixl 4 -3- O(Ix[ 6) 

If/3 > tic, then the minimum o f f (p )  is reached at all nonzero solutions of 
the equation IxL = tanh/3J Ixt. The fluctuations for/3 </3c are again normal. 
We limit ourselves to the case /3 = tic- The limit in formula (2.7) can be 



Quantum Mean-Field Models 809 

compu ted  with c~ = 3/4 and yields in a s t ra ightforward way the following 
distr ibution:  

45g.%(2) = 5u3 dx  exp - ( 1 / 1 2 )  txl 4 + 2f -  x 

5~o r 2 d r [ exp  - ( 1 / 1 2 ) r  4] sinh(2r/2r) 
- ~gr2drexp - - (1 /12)  r 4 

2.4, The BCS M o d e l  

Finally we compute  the f luctuations for the BCS model:  

N 2~ N 

HN= Z a3,i N - 1  ~ (cr+af +af-a+) 
i = 1  i , j = l  

i < j  

where 7 > 1 and a •  �89 0"2)" The critical t empera ture  tic is now given 
by 7 tanh fie = 1. Fo r  fi < fie the f luctuations are again normal .  We will limit 
ourselves to the case fl = tic- The  m i n i m u m  of the free energy density f (p)  
is reached for a 2 x 2 density matr ix  paramet r ized  by x0 = (0, 0, 1/2). The  
free energy density is again analytic a round  that  point  and, in t roducing the 
paramete rs  

1 
x I = r cos q), x2 = r sin (p, x3 = z + - 

7 

we find the leading terms in the expansion of the free energy density 

flf(p) = flf(p(Xo)) + Az 2 + Br2z + Cr 4 + ".. 

where the coefficients A, B, C are given by the following expressions: 
denote  U(p)= - ( l / p ) ~ ( p ) ,  where s is the en t ropy  function; then 

1 . 1 

The quadra t ic  form AzZ+ Br2z + Cr 4 in z and r 2 is positive because 

B 2 -- 4A C = ~ 7 U 0  < 0 
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As in formula (2.4), we have to consider two cases: 

(a) If f ' ~  = +or 3, then the distribution becomes 

& _ ~lxl~<ldxexp - N ( A z Z + B r 2 z + C r 4 ) + N 1  ~2z 
q~3(,t) - lim 

N ~ o ~  5,x1~1 dx exp - N ( A z 2 + B r 2 z + C r  4) 

This limit will exist and be nontrivial if c~ = 1/2; introducing the scalings 
NX/2z and N1/4r, one gets 

~be,o, ~o~dz ~ r d r e x p - ( A z 2 + B r 2 z + C r 4 ) + 2 z  

~3, , 5~176 dz S? r dr exp - ( A z 2  + Br2z + CF 4) 

(b) If ( f3)2< 1, the distribution qsr~.%(2 ) exists and is nontrivial if 
= 3/4; using the same scalings as above, one gets 

~~ d z ~  rdr jof2~dO [exp - (Az2+Br2z+Cr4)+)~(1  _f2)1/23 r cos O] 

2~ 5~o~ dz 5~ r dr 5~ ~ dO exp - (Az 2 + Br2z + Cr 4) 

_ 5o~ r dr 5 2~ dO exp - ~[(4AC - Ba)/A ] r 4 -t- 2(1 --J31:('211/2 r cos 0 

2~ 5~ r dr 5 2~ dO exp - � 8 8  r 4 

Although we considered here only a couple of simple mean-field 
models, already quite different distribution functions have been obtained 
and the multidimensional character clearly emerges. It is clear that by 
considering more complicated models, like the one in (2.1), it will also be 
possible to increase the order c~ of the critical fluctuations for quantum 
mechanical models. It is also clear that by considering higher-point inter- 
actions or by increasing the single-site spin the complexity of the critical 
distribution functions increases. 
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